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Abstract

Presently, 15 U.S. states require passenger vehicles to undergo periodic safety inspections.
Past studies estimating the effectiveness of these safety inspection andmaintenance programs
(I/Mprograms) in their stated aimofmitigating road accidents and fatalities have tended to rely
on outdated data-sets, or to focus on specific geographic regions. Since inspection program ef-
fectiveness continues to be deliberated in legislative bodies across the country, this paper aims
to present a replicable and data-driven quantification of the effects of I/M programs on road
fatalities, applying the largest available data-set, covering all 50 U.S. states over a 44-year pe-
riod. This paper presents strong evidence that jurisdictions experience lower roadway fatality
rates due to the presence of an active safety I/M program for passenger vehicles. Panel data
regressions showed a negative correlation between the presence of state I/M programs, and
the fleet-size-adjusted roadway fatality rate. Fixed effects (FE) estimates suggest that states
with I/M programs had 2.8% fewer roadway fatalities per 100,000 registered passenger vehi-
cles (90% CI: 0% to 5.6%) nationwide, based on data from 1975–2018. A two-stage least-squares
(2SLS) specification is also presented, which not only supports this finding, but also implies a
causal relationship between the presence of I/M programs, and lower road fatality rates.

1 Introduction

About 6.5 million roadway accidents occur in the United States each year, costing up-

wards of $240 billion, and causing over 30,000 fatalities: the Centers for Disease Control and Pre-

vention (CDC) listmotor accidents as a leading causeof adultmortality in theUnited States (nassgess;

Blincoe et al., 2015; CDC, 2020; NHTSA, 2018). To mitigate roadway fatalities, government agen-

cies have established a slew of regulations such as seat-belt laws, improved roadway design and

speed-limit reductions. Over the last fifty years, these regulations have hadmeasurable success in

reducing roadway fatalities (Brüde, 1995; Evans, 2014).

Additionally, the National Traffic and Motor Vehicle Safety Act of 1966 requires the Na-

tional Highway Traffic Safety Administration (NHTSA) to implement and update Federal Motor
*This document is a condensed version of a study that appears in the lead author’s doctoral thesis acharyaphd.
†Corresponding author. acharyap@cmu.edu. 5000 Forbes Ave., BPH129, Pittsburgh, PA 15213, USA
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Vehicle Safety Standards (FMVSS), enforceable on vehicle manufacturers (49 C.F.R. §571, 2004).

Mandatory standards for new light-duty passenger vehicles (LDV’s)—which include, e.g., the instal-

lation of airbags and child-restraint anchors on all LDV’s, and requirements for crash-worthiness

testing—have been shown to significantly lower the rate of roadway fatalities (Bento et al., 2017;

Kahane, 2015). However, while federal standards have made new vehicles increasingly safe, gov-

ernment agencies have long recognized that LDV’s must continue to meet these standards over

their lifetime. While recent FMVSS regulations have required the incorporation of modern tech-

nologies (e.g., anti-lock brakes and back-up cameras) into LDV’s, these standards are not intended

to regulate the proper use and maintenance of even the most basic safety features (e.g., sufficient

tire tread depth or brake-pad thickness) after an LDV has left the assembly line. The performance

of individual vehicles’ components and safety features over time varies widely and regardless of

the standards to which they were built. It is influenced by several factors including but not limited

to where and how they are used, and how well they are maintained by vehicle-owners.

1.1 Vehicle safety inspection andmaintenance programs

To ensure that vehicles continue to meet safety standards over their lifetimes, jurisdic-

tionsmay establish vehicle safety inspection andmaintenance programs (I/Mprograms). The aim

of these programs is to mitigate motor accidents or roadway fatalities which can be attributed to

vehicles operating unsafely due to wear-and-tear or insufficient and improper maintenance. I/M

programs exist across the world, and are typically administered by national or (as in the case

of the U.S.), state-level departments of transportation (DOT’s). Typically, these programs require

that vehicles be periodically brought to an inspection station, where a road-worthiness certificate

is issued only to LDV’s meeting all standards and requirements. For example in Pennsylvania, an-

nual “safety inspections for passenger cars and light-duty trucks require that the following items

be checked: suspension components, steering, braking systems, tires and wheels, lighting and

electrical systems, glazing (glass), mirrors, windshield washer, defroster, wipers, fuel systems,

the speedometer, the odometer, the exhaust systems, horns and warning devices, the body, and

the chassis” (PennDOT, 2017). Vehicles are only certified upon the completion of any requisite

maintenance.

I/M programs were among the earliest strategies implemented to regulate vehicle safety

in the United States. The first programs were voluntary (i.e., states recommended periodic in-
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Figure 1: Timeline of establishment and repeal of U.S. I/M programs

spections, but did not mandate them). Massachusetts’ voluntary program, founded in 1926, was

followed in quick succession by similar offerings at states across the eastern seaboard. The first

mandatory safety I/M program was established in 1929 in Pennsylvania; this program continues

to be active and is the nation’s longest running safety I/M program. After a 1968 hearing in the U.S.

Senate found that vehicle-owners were incurring high costs for unsatisfactory vehicle repairs, the

Motor Vehicle Information and Cost Savings Act was passed, giving the U.S. Department of Trans-

portation (through state agencies, if needed) the power to establish inspection stations and con-

duct vehicle safety inspections (Schroer & Peyton, 1979). As a result, in 1973, NHTSA issued vehi-

cle in-use (VIU) standards, with the intention of requiring every U.S. state to institute a safety I/M

program. This rule received almost immediate push-back from the states, compelling NHTSA to

weaken the VIU standards in 1976, no longer requiring mandatory inspections (Thompson, 1985).

As a result, while over a dozen U.S. states established programs in the 1960’s and ‘70’s, several

of them were repealed soon after. While not mandating I/M programs, NHTSA continues to pro-

mote safety inspections in recommendations and guidance such as routinely-published ‘Proactive

Safety Principles’. Yet, of the 32 active I/M programs in 1976, 18 have since been repealed, and no

new programs have been established (GAO, 2015). As shown in Figure 1, only 14 U.S. states con-

tinue to have mandatory periodic vehicle safety inspection programs in 2020.
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The decline in legislative and popular support for these programs since the mid-1970s

which has led to this string of repeals, was primarily motivated by “waning public concern with

highway safety” and the perception “that mechanical defects cause a small portion of” accidents

(Thompson, 1985, pp. 696). While there may be a perception that I/M programs are ineffective

since newer vehicles rarely fail safety inspections, Peck et al. (2015) note that this perception

hinges on a significant under-estimation of the number of LDV’s failing safety inspections. Addi-

tionally, they argue that since inspection failure rates do not tend to zero, they are still an impor-

tant means of identifying the need for, and enforcing, critical vehicle maintenance. Stakeholders

across the United States continue to advocate for the elimination of I/M programs, arguing that

they are expensive to consumers, and cause no significant change in the rate of road accidents or

fatalities. A large strand of literature contain studies that have attempted to quantify this change.

However, most of these earlier studies (discussed below) have been narrowly defined—either fo-

cusing only on one region, or limiting their analyses to a short time-frame. Several others also

use data which may now be considered outdated. The 1970’s and 1980’s saw the implementation

of FMVSS as well as laws lowering speed limits and mandating seat-belt use, making vehicles and

roads safer and incomparable with data or analyses from earlier decades. We believe that using

outdated studies, based on small subsets of data frommany years ago, is not sufficient to support

current considerations of the effectiveness of these I/M programs.

1.2 Review of literature

A large number of studies in the literature examine the effect between safety inspection

programs and road accident or fatality rates, but this question has rarely been explored with a

panel-data approach Early studies were typically limited to data from as far back as the 1930’s, and

typically limited to only a single state or region (Garbacz, 1990; Garbacz&Kelly, 1987; Loeb&Gilad,

1984; Loeb, 1990; Peltzman, 1975; Schroer & Peyton, 1979; Zlatoper, 1989). More recent studies

limited to specific regions (states, urban areas, or foreign countries) have also been conducted

(Blows et al., 2003; Christensen & Elvik, 2007; Fosser, 1992; Hoagland & Woolley, 2018; Murphy

et al., 2018; White, 1986).

Numerous studies with a national scope also exist in the literature, typically based on

data the federal Highway Statistics database (Merrell et al., 1999; Poitras & Sutter, 2002; Sutter &

Poitras, 2002). However, the Highway Statistics data applied in the aforementioned are based on
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representative samples, and are designed only to be nationally representative (FHWA, 2018). That

data-set is not designed to be accurate at higher resolutions, and the application of these data for

state-level analyses as conducted by Merrell et al. (1999) may suffer from errors due to sampling

biases.

1.3 Motivation

Jurisdictions continue to debate the need for, and effectiveness of, I/M programs while

relying on outdated or narrowly-focused evidence in the literature. To better inform future legis-

lation and policy development, this study aims to develop a reproducible and data-driven analysis

that applies nationally representative data over the longest possible period, to quantify the miti-

gating effect—if any—of safety I/M programs onmotor accidents and roadway fatalities. Applying

a panel of fatal accident data representing all 50 states (and theDistrict of Columbia) over a 44-year

period, we develop a fixed effects regression to control for the potential state and time effects in

order to improve the robustness of our estimates. Our specification regresses the presence of state

I/M programs against adjusted roadway fatality rates, while controlling for several related factors.

The results obtained from the fixed effects regression are supported by several supplementary

regressions, including an instrument variable regression that relaxes the assumption that the im-

plementation of the I/M program (i.e., the treatment) is random across states.

1.4 Contributions of this study

Passenger vehicle safety inspections in the U.S. are based on a patchwork of state-level

regulations, while accident and fatality rates continue to also depend on nationwide trends and

federal laws. The results presented below have been developed from U.S. accident and demo-

graphic data of uniform resolution (rather than sampled surveys) in all fifty states and the District

of Columbia, allowing stakeholders to access relevant, national-level results, instead of interpo-

lating from regional or international studies. Rather than assessing only one state or region, the

results presented below indicate an average treatment effect (ATE) of I/M programs on roadway

fatalities across the United States. Furthermore, as discussed in Section 2, the data used in this

study is the largest publicly available road fatality database in the United States, recording nearly

every fatal accident having occurred anywhere in the country, over a period of more than four

decades.
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2 Data

Consistent data that are of similar quality and resolution in each jurisdiction and over

time are critical to assessing the effects of establishing or repealing a state-level passenger vehicle

inspection program. However, since accident data collection is typically managed by state-level

DOT’s, first-responders, and law-enforcement agencies are managed at the city- or county-level,

there exists neither a framework nor an incentive for the uniform collection and nationwide dis-

semination of data from every fatal motor accident. While the NHTSA National Automotive Sam-

pling System–General Estimates System (NASS-GES)may provide valuable insights at the national

level, it is based on sampled data, and, as such, is not designed to have meaning at the state-level

(NHTSA, 2020b; Peck, 2015). Databases maintained by state DOT’s (for example, in Texas, as de-

scribed byMurphy et al. (2018))may account for all accidents in that state, but these data are likely

to vary widely in resolution and format between states. As such, a database of all motor accidents

in the U.S. which is uniformly resolved at the state-level, is not publicly available. For this reason,

the models presented in this study have been restricted to evaluating I/M programs’ impact on

fatal accidents—for which such a database is free and publicly accessible.

2.1 The Fatality Analysis Reporting System

Every year, states share data with NHTSA on all police-reported fatal motor accidents in

their jurisdiction through the Fatality Analysis Reporting System (FARS), which was created by an

act of Congress (NHTSA, 2020a). “The FARS crash data files containmore than 100 coded data ele-

ments characterizing the crash, vehicles, and people involved.” (NHTSA, 2010). This feature-rich

data-set ismaintained primarily to inform regulation in Congress and at theUSDOT.While report-

ing data to FARS is entirely voluntary and governed by cooperative agreements, most states have

regulations mandating the collection and submission of data on fatal accidents. This reporting—

since 1975—has led to the development of a nationwide census of fatal accidents over the last four

decades. The FARS database provides a uniform and systematic format for states to record and

share fatal accident data, which is why it was selected for this study. We decide to focus on road fa-

tality rates as our primary outcome of interest, since the likelihood of reduction in fatalities are a

strong element in decisions surrounding the implementation, withdrawal or maintenance of I/M

programs. Another advantage of the FARS database is that, unlike the limitations of other data

sources used in previous studies, the FARS database provides feature-rich, uniform and systemat-
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ically recorded data on fatal accidents in every state, and over several decades. Due to this consis-

tency, the models presented below—in line with numerous past studies—use the FARS database

to assess I/M programs’ effect on fatality rates. While the task of collecting, collating, and submit-

ting data to the FARS database falls on first responders and on staff at state DOT’s, the process is

heavily controlled by NHTSA.

Vehicle contributing factors The FARS database includes records of ‘vehicle contributing fac-

tors’, i.e., factors related to involved vehicles’ safety features that first responders perceive to have

led to the accident. The FARS data format allows for the recording of over a dozen ‘contributing

factors’. These factors—such as low tire-tread depth, or worn brakes—involve components which

would typically be inspected and remedied during a periodic inspection. In theory, these data

would be the most reliable indicator of the impact of I/M programs on preventing fatal accidents,

since a vast majority of these ‘factors’ would likely have been identified and remedied during a

safety inspection. There is evidence in the literature that these datamay be under-reported: while

they did not examine vehicle contributing factors specifically, Rolison et al. (2018, pp 22) found

that other contributing factors (such as driver distraction and impairment, cell-phone use, etc.,)

are under-reported, since the priority of responding officers at the scene of an accident is to en-

sure the safety of road users, rather than to collect these data. This evidence is also supported by

anecdotal accounts of numerous I/M program administrators. Given our belief that these data are

under-reported, the specifications developed in this study apply a dependent variable based on

all fatal accidents, regardless of whether such a ‘contributing factor’ was recorded. However, the

proportion of accidents with a recorded ‘contributing factor’ was included as a control to evaluate

its correlation respectively with other exogenous variables, and with the rate of fatalities.

Furthermore, we choose not to focus our analyses on these contributing factors, since,

unlike the control studies conducted by Fosser (1992) and Christensen and Elvik (2007), data on

defects or ‘contributing factors’ are not publicly available in the United States for vehicles which

were not involved in accidents.

2.2 Complementary data

In addition to FARS, this analysis uses numerous other data sources, and all of which are

free andpublicly available (FHWA, 2018; NCEI, 2020; NCSL, 2020; U. S. CensusBureau, 2016, 2020).

Further discussion of these supplementary data sources, and the regressors developed from them
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are presented in Section 3.4.

3 Methodology

3.1 Time-series regressionmodels

The availability of longitudinal data on accidents occurring at the state level enable us

to gather information and responses to a total of 51 jurisdictions over 44 years (1975-2018). Given

the large temporal span and geographical coverage of the data, we build our econometric specifi-

cations based on panel data models as they allow us to control for broader time trends and state

effects across observed units (Chamberlain, 1984; Hsiao, 2003) that should clear our estimates

from external biases unrelated to the implementation of I/M programs (e.g., improved standards,

seat-belt laws, etc.) that can still impact the road fatality rates. Therefore, the specifications in our

analysis use both time and state fixed effects. The decision to use panel datamodels is in line with

the recent strands of the literature, as several recent studies discussingmodel and regressor spec-

ifications for the prediction of accident and fatality rates concur on the use of panel data models

to assess weighted fatality rates (Chen et al., 2018; Fountas et al., 2018; Hauer, 2010; Liu et al., 2018;

Siegrist, 2010; Stipdonk et al., 2010).

We note here that bymodeling average or mean values, rather than looking at each vehi-

cle’s inspection status during an accident, that our analysesmay be subject to an ecological fallacy.

However, we believe that by limiting our analyses to in-state passenger vehicles, we are able to rea-

sonably assume the inspection status of each individual vehicle and of the group as awhole, based

on the inspection requirements in each state at the time of analysis. Furthermore, mean accident

data are calculated based on individual-vehicle level records, and resultant errors are explicitly

stated in our analyses.

3.2 Accounting for I/M program jurisdiction

The FARS database includes fatal road accidents of all types, including those involving

commercial vehicles (buses, trucks, other commercial equipment, etc.), which are governed by

safety standards and I/M programs unrelated to the LDV I/M programs which are the focus of this

study. Therefore, we exclude accidents involving only other types of vehicles and accidents involv-

ing passenger vehicles as well as other types from the present analysis. This allows for models to
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bedeveloped aroundonly those vehicleswhich are likely covered by the I/Mprograms in question.

Passenger vehicle I/M programs are administered at the state-level, usually by trans-

portation agencies, which implies that the jurisdiction of each I/M program is assumed to be lim-

ited to vehicles registered in said states. However, a considerable proportion of vehicle miles are

traveled out-of-state, and as a result, vehicles may be involved in accidents outside their home

state. One previous study addresses that issue by ignoring the location of the accident and de-

velop panels based solely on the vehicles’ state of registration (Hoagland & Woolley, 2018), but

this strategy is limited by the fact that it does not control for state-based differences across states

in first-responder procedures which can lead to biases since as the data collection and reporting

norms can differ significantly fromone state to another. The present study contributes to the liter-

ature by clearing up this potential threat to estimates’ quality: we restrict the analysis to accidents

in which all vehicles involved were registered in the state where the accident occurred. This ap-

proach (of restricting analyses to vehicles under the jurisdiction of specific I/M programs) does

not appear in recent literature, and its application to quantifying the effectiveness of I/Mprograms

is a unique contribution of this paper. These restrictions do not impair the size of our final sample:

the present analysis was built on over 80% of accidents recorded in FARS data for each year over

the period 1975–2018 (for Panel I, as described below) and totals over 1.33 million fatal accidents.

3.3 Dependent variable

Thedependent variable selected for thesemodelswas anLDVfleet-size adjusted statewide

annual road fatality rate. This allows us to uncover any links between trends in these fatality rates

and the regression variables. The rate was expressed in fatalities per 100,000 registered passenger

vehicles, as shown in Equation 1. The choice to develop thesemodels based on a fleet-size adjusted

variable was made to control for the variability in per capita vehicle ownership (i.e., population

may not be an accurate measure of the number of passenger vehicles on a state’s roadways), and

to simplify the interpretation of results.

Adjusted Fatality Rateyear=A,state=B =

100, 000× Fatalities in year A, from accidents in state B∗

Number of registered passenger vehicles in state B in year A
∗where all vehicles involved in the accident were passenger vehicles, registered in State B

(1)
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3.4 Exogenous variables

Two data panels (referred to henceforth as Panels I and II) were developed for this anal-

ysis. Each was indexed by state and by year, and contained the dependent variable and the treat-

ment variable, in addition to a list of exogenous variables.

Panel I For use in the first model, a balanced panel indexed by state (50 states and the District

of Columbia) and by year (1975–2018) was developed from the FARS database. These variables are

listed in Table 1. The treatment variable, ‘Program’ is a Boolean variable indicating whether or not

an LDV safety inspection program was active in that state during that year. The specification also

includes other variables influencing the likelihood of an accident to occur (e.g., precipitation).

Table 1: List of exogenous variables included in Panel I.

Variable Name Description
Program Does this state have a program in this year? (Y = 1, N = 0)
Program_Repeal Was this program repealed in this year? (Y = 1, N = 0)
Program_Ever Did this jurisdiction ever have a program? (Y = 1, N = 0)
Population Statewide population (x100,000)
VMT Statewide total passenger vehicle miles traveled (VMT) (billions)
Prop_Rural_VMT Fraction of VMT estimated to be on rural roads
Registered_Vehicles Number of registered passenger vehicles in the state (x100,000)
Fatal_Accidents Total number of fatal accidents
Driver_Age Mean age of all drivers involved in fatal accidents
Median_Income Median statewide income
Fatalities Total number of road fatalities
Vehicle_Age Mean age of vehicles in fatal accidents
Vehicles_Per_Accident Mean number of vehicles in each fatal accident
Lanes Mean number of lanes at all accident sites
Speed_Limit Mean speed limit at all accident sites (MPH)
Prop_DUI Fraction of accidents with at least one recorded DUI
Prop_Speeding Fraction of accidents where at least one vehicle was speeding
Prop_VehCF Fraction of accidents with at least one ’vehicle contributing factor’
Prop_Weather Fraction of accidents in inclement weather
Prop_Surface Fraction of accidents with inclement surface conditions
VMT_Per_Vehicle Statewide mean annual VMT per vehicle (x1,000 miles)
Veh_Per_Capita Statewide mean number of registered passenger vehicles per capita

Panel II Additional variables were collected and used in the development of a second panel (in

addition to all variables included in Panel I, as listed in Section 3.4). These variables include eco-

nomic indicators. Regressions applying the within estimator work under the assumption that the
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application of treatment (i.e.,which states have or do not have I/Mprograms) is random. However,

the establishment and repeal of state I/M programs are likely not random. The presence of a pro-

gram in a state is reliant on support from legislators and state government officials. We include a

binary variable indicating which political party was in power in the state legislature, since the es-

timated treatment effect could be subject to an omitted variable bias if these political factors were

not controlled for in the specification. Additionally, this ‘party in power’ variable also allows us

to test Leigh (1994)’s hypothesis that I/M program ‘strength’ may be politically endogenous. Fur-

ther, as noted in several examples in the literature, the political party of the state government

also impacts key economic indicators, including “pollution, spending, policies, and labor market

outcomes” (Beland, 2016, pp. 2).

Panel II is an unbalanced panel, since these data are only available for every other year

between 1980 and 2006 (inclusive), and for every year 2008–2017. This second set of specifications

includes more variables and serves to complement Panel I. To trade-off between the availability

of more regressors, and this reduced frequency, we present two complementary fixed effects re-

gressions.

Table 2: List of additional exogenous variables included in Panel II.

Variable Name Description
Area State Area (mi2)
Road.length Total length of road (mi)
Road.density State Road Density (mi/mi2)
GDP Statewide average GDP per capita ($2017)
Pop.density Statewide population density (/mi2)
Disposable.income Median statewide disposable income ($2017)
Highway_expend_perCap State Highway Expenditure ($2017) per capita
Driver_per_capita Number of licensed drivers per capita
Precipitation Statewide Average Annual Precipitation (in)
Dem Legislative Party in Power (Dem = 1, Rep = 0)

3.5 Variable transformation

An inverse hyperbolic sine transformation of both the dependent and independent vari-

ables was used to improve regression performance and to facilitate easier interpretation of results

(Bellemare &Wichman, 2020; Burbidge et al., 1988).
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3.6 Fixed effects regressions

We present two FE regressions: Model I was developed based on the Panel I (a balanced

panel for 51 jurisdictions, and each year 1975–2018), andModel II was developed on Panel II (which

contains data for all 51 jurisdictions, but only a subset between 1975–2017). Panels I and II are fur-

ther described in Section 3.4 and 3.4 respectively. To address any possible correlation between

exogenous variables, FE models I and II use only a subset of variables from the corresponding

panels. We selected variables for each regression on the basis of variance inflation factors (VIF’s),

calculated for ordinary least squares (OLS) regressions for each panel, containing all exogenous

variables from that panel. Both models regress the treatment variable (i.e., the presence or ab-

sence of a state I/M program) against the dependent variable (described in Section 3.3). FEmodels

were chosen based on the result of (i) a robust Hausman Specification Test and (ii) an F-test. Since

the literature indicates effects both across time and states (i.e., ‘individual’-effect), FEModels I and

II are two-way models and controls for both state and time fixed effects.

3.7 Two-stage least squares regression

A core assumption of fixed effects specifications is that treatment (i.e., the presence or

absence of the I/Mprogram) are considered randomly distributed. In reality, the establishment or

repeal of I/M programs are driven by a multitude of factors including the affiliation and strength

of state legislatures and election cycles (Graham& Garber, 1984; Leigh, 1994). Therefore, we com-

plement the FE analysis with a two-stage least squares (2SLS) regression to account for reverse

causality and omitted variables, which may bias the FE regressions, preventing any meaningful

causal inferences from being drawn. By controlling for time-dependent omitted variable bias,

the 2SLS could uncover any causal relationship between the treatment and dependent variables

(James & Singh, 1978). The 2SLS model presented in this study applied the same panel and set of

regressors as FE Model I. Two instrument variables were selected for this regression: the third

lags of the ‘Prop_Speeding’ (i.e., fraction of fatal accidents involving at least one speeding vehicle)

and ‘Prop_DUI’ (i.e., fraction of fatal accidents involving at least one instance of DUI) variables.

The authors assert these variables to fit both conditions for unbiased instruments. These variables

were also found to reject the null hypotheses of a Sargan test (for over-identification) as well as a

Durbin-Wu-Hausman test (for estimator consistency).
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4 Results

4.1 Fixed effects regressions

Table 3presents estimates fromModels I and II. The coefficient for the treatment variable

is found to be negative and statistically significant in both models (respectively at the 90% and

95% levels), indicating that states with I/M programs have a lower fatality rate than those without.

Model II showed a reduction in fatality rates of 5.5% (95% CI: 0.4% to 10.6%), and Model I—with

fewer variables, but over a longer period—found a complementary result: jurisdictions with I/M

programs had 2.8% (90% CI: 0% to 5.6%) fewer fatalities per 100,000 registered vehicles than those

which did not.

Table 3: Fixed-effects regression results.

Dependent Variable:
Fatals_Per_100k_Veh†

Model I Model II
Program −0.028 (0.017)∗ −0.055 (0.026)∗∗

Program_Repeal −0.035 (0.035) −0.054 (0.053)
Population† −0.418 (0.034)∗∗∗

Driver_Age† −0.284 (0.080)∗∗∗ 0.055 (0.101)
Median_Income† 0.038 (0.078) 0.105 (0.104)
Vehicle_Age† 0.145 (0.048)∗∗∗ 0.344 (0.070)∗∗∗

Vehicles_Per_Accident† 0.523 (0.116)∗∗∗ 0.175 (0.144)
Lanes† 0.032 (0.047) −0.125 (0.059)∗∗

Speed_Limit† 0.119 (0.095) 0.290 (0.131)∗∗

Prop_DUI† 0.213 (0.051)∗∗∗ 0.326 (0.076)∗∗∗

Prop_Speeding† −0.147 (0.043)∗∗∗ −0.020 (0.055)
Prop_VehCF† −0.115 (0.156) −0.293 (0.242)
Prop_Weather† 0.121 (0.061)∗∗ 0.076 (0.067)
Prop_Surface† −0.066 (0.097) 0.084 (0.122)
Veh_Per_Capita† −2.552 (0.084)∗∗∗ −2.515 (0.106)∗∗∗

Prop_Rural_VMT† 0.460 (0.144)∗∗∗

GDP† 0.470 (0.073)∗∗∗

Highway_expend_perCap† −0.027 (0.020)
Precipitation† 0.021 (0.025)
Dem −0.063 (0.011)∗∗∗

R2 0.584 0.609
F Statistic 70.291 38.469
Observations 2244 1224
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

†Inverse hyperbolic sine transformation applied to this variable.

Both models also indicate that fatality rates are negatively correlated with mean vehicle
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age, which corroborates findings in the literature that crashes involving older vehicles are more

likely to result in fatalities. The models also indicate a negative correlation between the accident

rate and the number of passenger vehicles registered per capita. Model II also found two of the

additional demographic variables to be statistically significant—the statewide GDP, and the polit-

ical party in power at the state level. Further, the results are robust to the inclusion of the ‘party

in power’ controls which indicates that our conclusions are not impaired by non-randomness or

omitted variable bias. Neither Models I nor II found the proportion of accidents with a recorded

‘vehicle contributing factor’ to be significant.

4.2 Two-stage least squares regression

Table 4 show results from the 2SLS regressions. Estimates corroborate the previous find-

ings from the fixed effects models as they indicate that there exists a statistically significant neg-

ative relationship between the presence of an I/M program, and the road fatality rate.

Table 4: 2SLS regression results.

Dependent Variable:
Fatals_Per_100k_Veh†

Program −0.41 (0.11)∗∗∗

Program_Repeal −0.19 (0.06)∗∗∗

Population† −0.44 (0.04)∗∗∗

Driver_Age† −0.07 (0.12)
Median_Income† −0.04 (0.09)
Vehicle_Age† 0.17 (0.05)∗∗∗

Vehicles_Per_Accident† 0.58 (0.13)∗∗∗

Lanes† 0.02 (0.05)
Speed_Limit† 0.25 (0.11)∗∗

Prop_VehCF† −0.30 (0.18)
Prop_Weather† 0.28 (0.08)∗∗∗

Prop_Surface† −0.22 (0.11)∗∗

Veh_Per_Capita† −2.62 (0.10)∗∗∗

R2 0.88
Num. obs. 2244

Diagnostic test statistics:
Weak instruments 26.447∗∗∗

Durbin-Wu-Hausman 9.379∗∗

Sargan 10.695∗∗

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

†Inverse hyperbolic sine transformation applied to this variable.
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5 Discussion and Conclusions

Panel data model results provide strong evidence that jurisdictions experience lower

road fatality rates due to the presence of an active safety I/M program for passenger vehicles.

FEModels I and II showed a negative correlation between the presence of state I/M programs and

the fleet-adjusted fatality rate: Model II had themore statistically robust result, likely as a result of

the additional control variables. This specification showed the average treatment effect—i.e., the

average reduction in fatality rates between 1980 and 2017, for states with I/M programs in compar-

ison to those without—of 5.5% (95%CI: 0.4% to 10.6%). Model I, which has fewer control variables,

but applies the specification across all years from 1975–2018 shows a complementary result that

supports the findings of Model II. As per Model I, states with I/M programs were found to have

2.8% fewer fatalities (90% CI: 0% to 5.6%) over the period of analysis.

The existence of a statistically significant, negative, average treatment effect is further

supported by the value of the 2SLS regression estimates. The treatment variable coefficient is -

0.41 (95% CI: -0.52 to -0.30) which is of a significantly larger magnitude than the corresponding

coefficients in FEModels I and II. This indicates that omitted variable bias in the FEmodels’ error

terms causes thosemodels to underestimate the reduction in the fatality rate in jurisdictions with

active I/M programs.

Further, the application of statistically robust instruments (as verified by the Sargan and

Durbin-Wu-Hausman tests) indicate that the 2SLS models controls for both omitted variable bias

and any effect of reverse causality on the FE model errors. The authors argue that a statistically

significant coefficient for the treatment variable in the 2SLS specification, is thus an indicator of

causality—a negative coefficient (with 95% confidence) implies that the presence of state safety in-

spection programs likely causes ameasurable and significant reduction in the number of roadway

fatalities per 100,000 registered passenger vehicles in the state.

5.1 Influence of vehicle, infrastructure and traffic characteristics

Several other regression variables were found to have a statistically significant correla-

tion with the fatality rate. Models I & II found the mean age of vehicles involved in accidents to

be positively correlated to the fatality rate. This finding is supported by literature showing that

given an accident occurs, occupants of older vehicles are more likely to be fatally injured (Martin
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& Lenguerrand, 2008; O’Donnell & Connor, 1996). Both FE regressions also found the proportion

of fatal accidents involving DUI to have a significant positive correlation with the dependent vari-

able. This may be attributable to that drunk drivers tend to drive more aggressively: Zador et al.

(2000) finds that “the relative risk of involvement in a fatal vehicle crash increased steadily” as

driver blood-alcohol content increased. The FE regressions also indicated that states with more

registered passenger vehicles per capita had a lower fatality rate. This relationship has been ex-

plored extensively in the literature. Smeed (1949) first showed how increased traffic density would

tend to decrease the number of roadway fatalities per vehicle (Oppe, 1991; Ross, 1985).

Model I also indicates an inverse relation between fatality rates and median driver age—

supporting several similar findings in the literature (McCartt et al., 2009). Model I assigned nega-

tive coefficients for the variable corresponding to the proportion of fatal accidentswhere speeding

was recorded. With respect to additional demographic variables, Model II found there to bemore

road fatalities in states where a greater fraction of road miles were travelled on rural roads—in

keeping with most similar studies in the literature (Merrell et al., 1999; Peltzman, 1975; Zlatoper,

1989)—and in states with a lower GDP (supporting the ‘Peltzman effect’ hypothesis). The positively

correlated GDP (and the positively correlated median household income) align with findings in

the literature that higher-income drivers are less likely to drive defensively and therefore more

likely to be involved in accidents (Males, 2009; Shinar et al., 2001). The positive coefficients may

also be caused by a positive correlation between GDP and recreational travel (McMullen & Eck-

stein, 2012). Increased travel–especially long-distance travel and driving on rural roads—would

increase the number of fatal accidents. Model II also found a statistically significant relationship

between the party in power in a state legislature, and the adjusted roadway fatality rate, which

aligns with the political endogeneity argument made by Leigh (1994).

5.2 Policy implications

Our results affirm—based on data from 50 states and D.C. over a 44 year period—that I/M

programs have a negative and causal relationshipwith roadway fatalities, and that these programs

are effective in their stated aim of mitigating roadway fatalities. In this paper, we choose not to

comment on the financial cost of I/M program administration, or on the potential public cost sav-

ings from mitigated accidents and fatalities. While acknowledging these to be important factors,

we argue that legislative bodies must consider the reduction in fatalities as a statistically signifi-

16



cant benefit resulting from inspections, when debating the establishment or repeal of state safety

I/M programs.

The findings of this study are limited to fatal accidents, which comprise about 0.5% of all

road accidents occurring in the U.S. each year (NHTSA, 2020b). Based solely on the analyses pre-

sented here, no inferences may be made about the impact of I/M programs on less severe motor

accidents, however Blows et al. (2003) has shown that changes in the rate of allmotor accidents are

of the same order as changes in the rate of fatal accidents. We posit that safety inspections will

only become more important as Advanced Driver Assistance Systems (ADAS) and autonomous

vehicle (AV) technology becomemore prevalent: while several international jurisdictions have al-

ready adapted safety inspections to include testing and calibrating ADAS systems, this has yet to

be applied in the United States (Bellon, 2020).
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A List of abbreviations

Table 5 lists the abbreviations used in this paper.

Table 5: Abbreviations and terms referenced in this study.

Abbreviation Definition
2SLS Two-stage Least Squares (Regression)
ADAS Advanced driver-assistance systems
ATE Average treatment effect
AV Autonomous vehicle
BTS (U.S.) Bureau of Transportation Statistics
CDC United States Centers for Disease Control
DOT (state) Department of Transportation
DUI Driving Under the Influence (of alcohol, drugs, etc.,)
EPA (U.S.) Environmental Protection Agency
FARS Fatality Analysis Reporting System
FE Fixed Effects
FHWA (U.S.) Federal Highway Administration
FMVSS Federal Motor Vehicle Safety Standards
GAO (U.S.) Government Accountability Office
I/M Program (Vehicle) inspection & maintenance program
NASS-GES National Automotive Sampling System–General Estimation System
NCEI National Centers for Environmental Information
NHTSA National Highway Traffic Safety Administration
NOAA National Oceanic and Atmospheric Administration
PennDOT Pennsylvania Department of Transportation
USDOT United States Department of Transportation
VIF Variance Inflation Factor
VIU Vehicle-in-use (standard)
VMT Vehicle miles traveled (usually, annual)

B Dependent variable normalization

As discussed in Section 3.3, our regression specifications measure the dependent vari-

able (i.e., the fatality rate) in the number of fatalities each year per 100,000 registered passenger

vehicles in each state. We chose to use a fatality rate (by the number of vehicles, in this case) rather

than directly applying the absolute number of fatalities, since the former provides a more mean-

ingful basis for comparing the number and frequency of fatal accidents between states (given the

large variance in area, population, VMT and road density across states). Comparable analyses

in the literature have applied several different methods of normalizing the number of fatalities.

To ensure that our regressions are robust to the various means of normalization, we also present
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variants of Model I, with the dependent variable replaced by population- and annual statewide

VMT-adjusted fatality rates (i.e., roadway fatalities per 100,000 state residents, and per billion pas-

senger miles traveled in the state). Not only would these serve as a robustness check, but these

models’ results—if significant—help the interpretation of coefficients, and in comparing the re-

sults presented here, to findings from other studies in the literature.

It must be noted that thesemodels were developed fromModel I, and hence restricted to

accidents involvingonlypassenger vehicles occurring in the statewhere all vehicleswere registered—

precluding direct comparison with earlier models in the literature, most of which tend to include

all accident records. Results from these two models are presented in Table 6, and show similar

coefficients for the treatment variable (albeit, with differing levels of confidence), regardless of

how the dependent variable was normalized. This consistency in the sign and magnitude of the

treatment variable coefficient indicates that the negative correlation between fatality rates and

the presence of I/M programs is independent of the denominator applied to the number of fatali-

ties. As suchwe find thatModel I’s specifications are robust to changes in the normalization of the

dependent variable. Specifically, the coefficient for the treatment variable was negative regard-

less of whether the dependent variable (i.e., the fatality rate) was defined as a function of vehicle

registrations, vehicle miles traveled, or total state population.
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Table 6: Variations of FE Model I with different dependent variables.

Dependent Variable: Roadway Fatalities per
100k Vehicles† Billion VMT† 100k Population†

Program −0.028 (0.017)∗ −0.035 (0.016)∗∗ −0.025 (0.016)
Program_Repeal −0.035 (0.035) −0.052 (0.033) −0.039 (0.034)
Population† −0.418 (0.034)∗∗∗ −0.174 (0.032)∗∗∗ −0.417 (0.033)∗∗∗

Driver_Age† −0.284 (0.080)∗∗∗ −0.237 (0.074)∗∗∗ −0.310 (0.077)∗∗∗

Median_Income† 0.038 (0.078) −0.024 (0.072) 0.090 (0.076)
Vehicle_Age† 0.145 (0.048)∗∗∗ 0.086 (0.045)∗ 0.148 (0.047)∗∗∗

Vehicles_Per_Accident† 0.523 (0.116)∗∗∗ 0.315 (0.107)∗∗∗ 0.458 (0.112)∗∗∗

Lanes† 0.032 (0.047) −0.031 (0.044) 0.027 (0.045)
Speed_Limit† 0.119 (0.095) 0.069 (0.088) 0.082 (0.092)
Prop_DUI† 0.213 (0.051)∗∗∗ 0.069 (0.047) 0.182 (0.049)∗∗∗

Prop_Speeding† −0.147 (0.043)∗∗∗ −0.027 (0.040) −0.134 (0.042)∗∗∗

Prop_VehCF† −0.115 (0.156) −0.275 (0.145)∗ −0.139 (0.151)
Prop_Weather† 0.121 (0.061)∗∗ 0.071 (0.057) 0.086 (0.060)
Prop_Surface† −0.066 (0.097) −0.113 (0.090) −0.052 (0.094)
Veh_Per_Capita† −2.552 (0.084)∗∗∗ −0.046 (0.078) 0.043 (0.081)

R2 0.584 0.896 0.901
Observations 2244 2244 2244
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

†Inverse hyperbolic sine transformation applied to this variable.
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